Spectral Viscosity Method with Generalized Hermite Functions and Its Spectral Filter for Nonlinear Conservation Laws

نویسنده

  • XUE LUO
چکیده

In this paper, we propose a new spectral viscosity method for the solution of nonlinear scalar conservation laws in the whole line. The proposed method is based on the generalized Hermite functions. It is shown rigorously that this scheme converges to the unique entropy solution by using compensated compactness arguments. The numerical experiments of the inviscid Burger’s equation support our result. Moreover, we step further to discuss the postprocessing method of the approximate solution obtained by our method to eliminate the oscillation away from the discontinuity. We suggest a new spectral filter defined by a kernel function in the physical space, and show the spectral accuracy at the points away from the discontinuity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Viscosity Method Based on Hermite Functions for Nonlinear Conservation Laws

We consider the approximation by a spectral method of the solution of the Cauchy problem for a scalar conservation law in one dimension posed in the whole real line. We analyze a spectral viscosity method in which the orthogonal basis considered is the one of Hermite functions. We prove the convergence of the approximate solution to the unique entropy solution of the problem by using compensate...

متن کامل

Chebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗

In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...

متن کامل

Chebyshev–legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws∗

In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Computer Methods in Applied Mechanics and Engineering 80 (1990) 197-208 North-holland Shock Capturing by the Spectral Viscosity Method*

A main disadvantage of using spectral methods for nonlinear conservation laws lies in the formation of Gibbs phenomenon, once spontaneous shock discontinuities appear in the solution. The global nature of spectral methods then pollutes the unstable Gibbs oscillations over all the computational domain, and the lack of entropy dissipation prevents convergences in these cases. In this paper, we di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014